Preliminary Cost-Effectiveness of Transcendental Meditation (TM) for Treating PTSD in Veterans

Erik J. Groessl, PhD and Thomas Rutledge, PhD
VA San Diego Healthcare System
University of California San Diego

Disclosures

Analysis work was partially paid for by the David Lynch Foundation.

Background

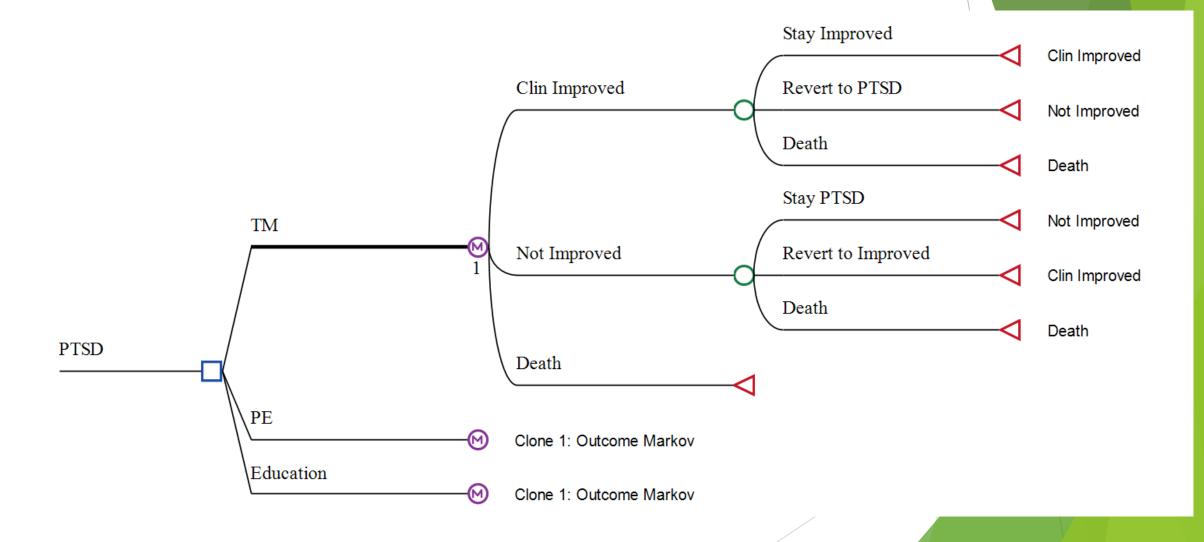
- ▶ PTSD diagnosed when symptoms (intrusive thoughts, emotional dysregulation, sleep problems, avoidance of trauma cues) do not diminish and are functionally impairing.
- ▶ PTSD is linked to a range of health problems depression, substance use, chronic pain, disability, suicidality, lower QOL, and higher health care costs.
- ► Rates of PTSD are higher in military veterans, with 22% of combatexposed veterans (in recent conflicts) meeting criteria for PTSD.

Background

- ► Effective PTSD treatments exist, with trauma-focused, CBT-based therapies such as (PE) and (CPT) recommended in guidelines and evidence-based.
- ► However, trauma-focused therapies often have high drop-out rates (~40%) and subsequently, high non-response rates (~50%)
- ► Transcendental Meditation (TM) is non-trauma-focused, involves the use of a mantra (sound), without concentration or contemplation.
- ► After smaller trials, a DoD-funded trial (2018) randomized 203 veterans with PTSD to either TM, PE, or health education (HE). (Nidich, 2018).

RCT Results

- Main result: TM was found to be non-inferior to PE, a first-line guidelineconcordant psychotherapy.
- ► The mean decreases in CAPS-IV scores were 16.1, 11.2, and 2.5 for TM, PE, and HE respectively.
- ► Rates of clinically significant improvement (CAPS score decrease ≥ 10) were 61.2%, 41.5% and 32.3% respectively.
- Treatment non-completion rates = 25% TM, 38% PE, and 35% HE.


Objective

- Examine the preliminary cost-effectiveness of TM for veterans with PTSD.
- ► Results considered preliminary because...
 - findings from a single RCT
 - did not track participant health care utilization/costs
 - limited to outcomes measured at three months.

Methods

- Markov decision model repeated cycles simulate response or nonresponse to the three study interventions from a <u>healthcare</u> <u>organization perspective</u>.
- In the first cycle, each participant (or cohort) accrues an estimated intervention cost
- In the first and subsequent cycles, each participant accrues Quality Adjusted Life Years (QALYs), estimated <u>health care costs</u> associated with intervention response or non-response.

Markov Model

Model Inputs

Inputs for the Markov Model were:

- ► Time Horizon: 5 years (20 3-month cycles: Marseille 2022)
- Mortality Rates age 47, 83% male, CDC tables, (32% Nilaweera 2023)
- Reversion rate 2.5% /3-mo cycle (Mavranezouli 2020)
- Inflation: Costs adjusted to 2023 US\$ (US CPI calculator)
- Discount rate: 3% annual (convention for CEA) (Neumann 2017)

Intervention Cost Estimates

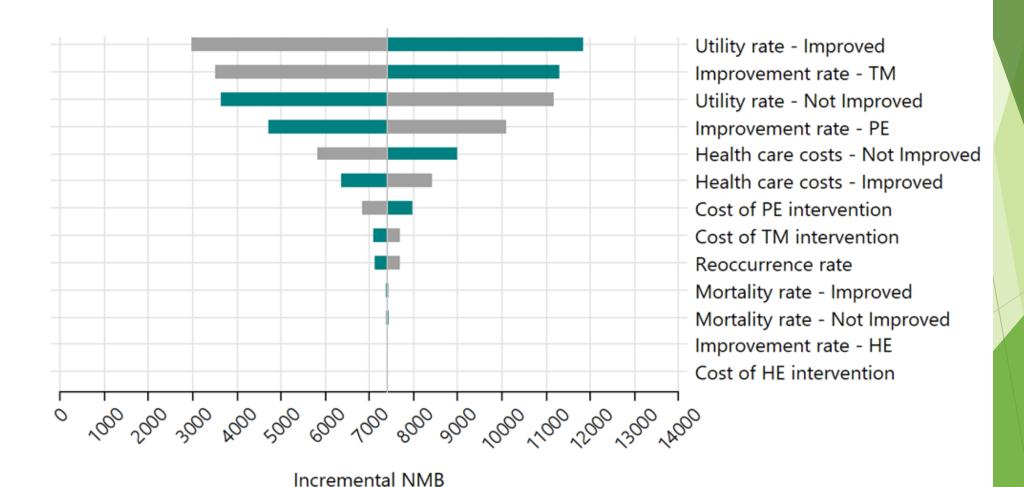
- ► TM cost \$1,504/participant
 - ► TM administrators in \$2023 plus small add-on for scheduling
- ► PE cost \$2,822/participant
 - ▶ Mavranezouli et al. 2020 CEA of psych treatments for PTSD
 - ► Adjusted for 12 90-minute sessions, \$US, and to \$2023
- ► HE cost \$492/participant
 - ► Groessl et al. 2016 LIFE Study
 - adjusted for # sessions and to \$2023

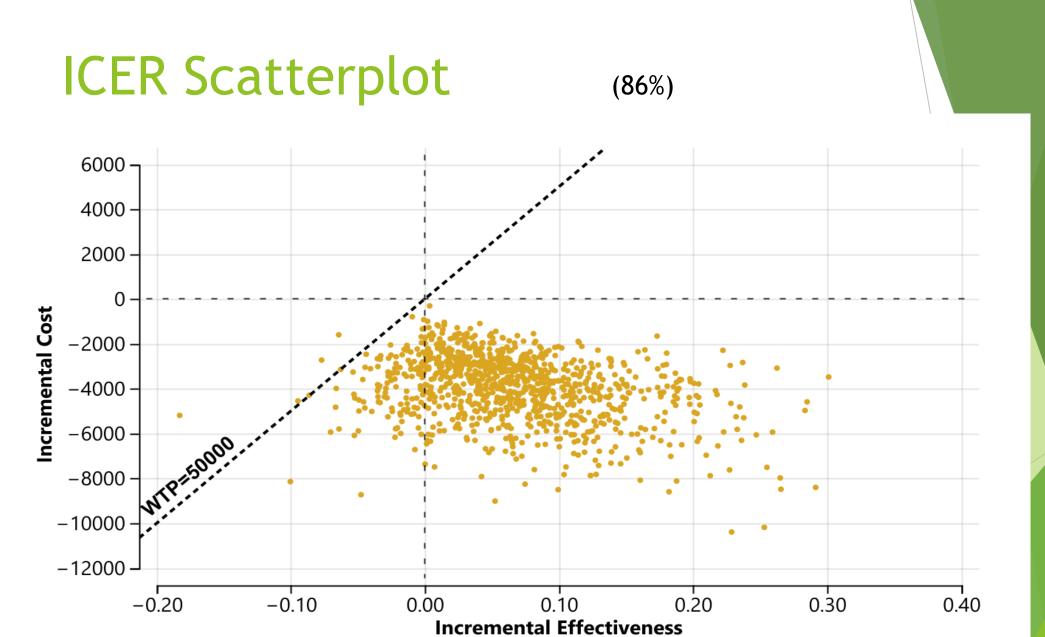
Effectiveness and Health Utility Values

- Rates of clinically significant improvement (CAPS score decrease > 10) 61% (TM), 41% (PE), and 32% (HE).
- Health Utility
 - Values range from 0 to 1.0
 - Lack of good estimates
 - Some recent studies have used complex and wide-ranging values (Marseille 2022)
 - ▶ Mavranezouli et al. 2020 conservative values
 - ▶ 0.63 clinically improved
 - ▶ 0.54 not clinically improved

Cost Estimates - health care costs

- ► Harper et al. 2022
 - costs for 1,377 VA patients with and without PTSD were tracked
- Adjusting for inflation
 - ▶ \$12,154 annually for with PTSD
 - ▶ \$7,855 annually for without/resolved PTSD


Sensitivity Analysis


- Model inputs were varied to examine the sensitivity of the results to variation in model inputs.
 - inputs were varied using 95% confidence intervals when available
 - or + or 20% in either direction
- A probabilistic sensitivity analysis (PSA) was conducted
 - ► Monte Carlo procedure with 5000 simulations
 - inputs values were randomly selected from variable distributions

Main Results

	HE	ТМ	PE	Difference TM vs HE	Difference TM vs PE	Difference PE vs HE
Effectiveness						
-rate of clinical improvement	0.32	0.61	0.42	0.29	0.19	0.10
-QALYs	2.60	2.70	2.63	0.10	0.07	0.03
Costs						
-Intervention costs	\$492	\$1,504	\$2,822	\$1,012	-\$1,318	\$2,330
-Consequent health care costs	\$48,218	\$43,968	\$46,753	-\$4,250	-\$2,785	-\$1,465
Total Costs	\$48,710	\$45,472	\$49,575	-\$3,238	-\$4,103	\$865
ICER				dominant	dominant	\$28,833
Incremental NMB				\$8,267	\$7,397	\$870

Sensitivity Analysis

Summary

- ► TM was the dominant treatment strategy
- TM was more effective clinical improvement in PTSD, results in lower subsequent hc costs, saving money longterm
- Savings per person are means from all participants and thus can be multiplied by a cohort
- ► Limitations include a single RCT, estimates, and 3-month outcomes

References

- 1. Nidich S, Mills PJ, Rainforth M, et al. Non-trauma-focused meditation versus exposure therapy in veterans with post-traumatic stress disorder: a randomised controlled trial. Lancet Psychiatry. 2018;5(12):975-986.
- 2. Neumann PJ, Sanders GD, Russell LB, Siegel JE, Ganiats TG. Cost-Effectiveness in Health and Medicine. Second ed. New York, NY: Oxford University Press; 2017.
- 3. Nilaweera D, Phyo AZZ, Teshale AB, et al. Lifetime posttraumatic stress disorder as a predictor of mortality: a systematic review and meta-analysis. *BMC psychiatry*. 2023;23(1):229.
- 4. Mavranezouli I, Megnin-Viggars O, Grey N, et al. Cost-effectiveness of psychological treatments for post-traumatic stress disorder in adults. PloS one. 2020;15(4):e0232245.
- US Department of Labor. Bureau of Labor Statistics. May 2019 National Occupational Employment and Wage Estimates. https://www.bls.gov/oes/current/oes_nat.htm#29-0000. Published 2021. Accessed January 28, 2021.
- 6. U.S. Bureau of Labor Statistics. CPI Inflation Calculator, 2023.
- 7. Groessl EJ, Kaplan RM, Castro Sweet CM, et al. Cost-effectiveness of the LIFE Physical Activity Intervention for Older Adults at Increased Risk for Mobility Disability. J Gerontol A Biol Sci Med Sci. 2016.
- 8. Harper KL, Moshier S, Ellickson-Larew S, et al. A prospective examination of health care costs associated with posttraumatic stress disorder diagnostic status and symptom severity among veterans. Journal of traumatic stress. 2022;35(2):671-681.
- 9. Neria Y, al. e. Transcendental Meditation in Veterans and First Responders With PTSD. (Trial registration). ClinicalTrials.gov. https://clinicaltrials.gov/study/NCT05645042. Published 2022. Accessed 2023.